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Abstract

We show that the four-dimensional Lovelock-Cartan action can be derived from a mass-
less gauge theory for the SO(1, 3) group with an additional BRST trivial part. The model
is originally composed by a topological sector and a BRST exact piece and has no explicit
dependence on the metric, the vierbein or a mass parameter. The vierbein is introduced
together with a mass parameter through some BRST trivial constraints. The effect of the
constraints is to identify the vierbein with some of the additional fields, transforming the
original action into the Lovelock-Cartan one. In this scenario, the mass parameter is iden-
tified with Newton’s constant while the gauge field is identified with the spin-connection.
The symmetries of the model are also explored. Moreover, the extension of the model to a
quantum version is qualitatively discussed.

1 Introduction

In [1], J. Zanelli and A. Mardones proposed the most general gravity action depending on the
curvature and torsion without the use of the Hodge dual operation for any spacetime dimension.
This result generalizes the Lovelock theorem [2] which states, for any dimension, the most general
gravity action depending only on the curvature. The Zanelli-Mardones result was baptized as
Lovelock-Cartan theory of gravity. The main motivations of this result, in despite of the fact
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that torsion degrees of freedom have never been observed in gravity, is that torsion might be
relevant at quantum level and the fact that curvature and torsion are at the same level under
the geometry point of view [1, 3, 4, 5, 6, 7, 8, 9].

The fact that curvature and torsion are independent quantities in Lovelock-Cartan (LC)
theories enables the use of the Einstein-Cartan formalism of gravity [3, 10, 11, 12], which is
based on the vierbein and spin-connection as fundamental and independent variables. In this
approach, gravity can be interpreted as a kind of gauge theory where the gauge symmetry is
identified with the spacetime local isometries. This equivalence opens the possibility of the
application of well-known quantization techniques of gauge theories.

In despite of how similar such formulations of gravity are with respect to gauge theories,
their quantization as fundamental theories still lacks. Essentially, these theories share the same
problems of pure metric and Palatini theories of gravity [13, 14, 15]. In particular, the pertur-
bative renormalizability or unitarity problems remain [16], as well as background independence
[17, 18] and so on.

In the present work we provide the construction of a gauge theory which encodes the
Lovelock-Cartan dynamics. The gauge theory is constructed for the gauge group SO(1, 3) over
a four-dimensional manifold. In contrast to the gravity theories in the Einstein-Cartan formal-
ism, the gauge degrees of freedom and the spacetime are independent, by construction. The
original action is massless and is formed by a topological term and a BRST exact one and the
fundamental fields are the gauge connection, the ghost field and a quartet system formed by two
BRST doublets. Moreover, the gauge theory is metric independent and also independent of the
vierbein field. On the side of the manifold, we provide no dynamics to it. It is just a generic
manifold where the gauge theory lives on. Hence, with the help of extra BRST doublets, we
introduce an algebraic quadratic coupling with the vierbein of the manifold. The extra doublets
can be visualized as Lagrange multipliers for extra constraints. The effect of such constraints is
to transform the gauge theory coupled to the vierbein into the four-dimensional LC action. Es-
sentially, the constraints identify the gauge theory degrees of freedom with spacetime, providing
the LC dynamics to it.

The model enjoys a rich set of symmetries that can be written as consistent Ward identities.
This feature would be important in a quantum version of the model. A possibility is to quantize
the gauge theory coupled to the classical vierbein. The classical limit of such model would be
the LC action. In this scenario, the dynamics of spacetime would be ruled by a quantum gauge
theory composed by a topological piece and a BRST exact one. Nevertheless, in this work, we
remain at classical level. The formalization of the quantum version of the model is left for future
investigation due to the intricacies of renormalizability and gauge fixing of metric free theories.

The article is organized as follows: In Sec. 2 we provide a small overview of the Lovelock-
Cartan action in four dimensions. In Sec. 3 we construct the massless gauge theory composed
by a topological term and a BRST exact one. We also provide a complete discussion about
the symmetries of the model in terms of Ward identities. In Sec. 4 we introduce the massive
constraint carrying the vierbein classical field and discuss how the constraint leads to the LC
action. In addition, we generalize all Ward identities of the previous section. In Sec. 5 we provide
an extra discussion about the BRST symmetry and a detailed, yet qualitative, discussion about
the quantum version of the model. Finally, in Sec. 6 we display our conclusions.
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2 Overview of the Lovelock-Cartan action in four dimensions

The Lovelock-Cartan action [1] in four dimensions is given by

S = S0 + Sµ , (2.1)

where

S0 =

∫ (
z1ǫabcdR

abRcd + z2R
abRab

)
, (2.2)

and

Sµ = µ2

∫ [
ǫabcd

(
z3R

abeced + z4µ
2eaebeced

)
+ z5Rabe

aeb + z6T
aTa

]
, (2.3)

over a four-dimensional manifold M . The quantities Ra
b = dωa

b + ωa
cω

c
b and T a = Dea =

dea+ωa
be

b are, respectively, the curvature and torsion 2-forms. The basic fields are the vierbein
1-form ea and the connection 1-form ωa

b. All parameters zi are dimensionless while µ carries
mass dimension 1. Moreover, the action (2.1) also contains the invariant tensors ǫabcd and ηab.

The first term in (2.2) is recognized as the Gauss-Bonnet topological term while the second
term is the Pontryagin topological term. For z6 = −z5, the last two terms in (2.3) are also
reduced to a topological term, i.e., the Nieh-Yan term: T aTa − Rabe

aeb = d(eaT
a). On the

other hand, because DT = Re, these terms are actually the same up to surface terms. Thus,
generically, S0 is topological while Sµ is dynamical. Obviously, the first term in the action Sµ

is the Einstein-Hilbert action while the second term in Sµ is the a cosmological constant term.
Hence, µ2z3 is identified with Newton’s constant while µ2z4/z3 with the cosmological constant.

The action (2.1) is invariant under gauge transformations for the group SO(1, 3) whose
infinitesimal version are

δea = −ξabe
b ,

δωa
b = Dξab = dξab + ωa

cξ
c
b − ω c

b ξ a
c , (2.4)

which describe the local spacetime isometries associated to the strong equivalence principle. The
quantity ξab is the infinitesimal gauge parameter and D the exterior covariant derivative in the
adjoint representation. These transformations correspond to transformations in the cotangent
space at a point x ∈ M . Moreover, since these transformations leave the manifold coordinates
unchanged, they can be interpreted as gauge transformations. Thus, gravity can be interpreted
as a special type of gauge theories for which the fields have a geometrical meaning1. These
transformation laws establish that, under the gauge theory point of view, the gauge field of the
model is the spin-connection ω while the vierbein e is a matter field.

3 A massless gauge theory

As discussed at the Introduction, the aim of the paper is to show that the LC action (2.1) can
be obtained from a trivial theory (in the sense of containing just a topological and BRST-exact
terms) by the introduction of a suitable algebraic linear constraint. This section is devoted to
the construction of such trivial action.

1The fields directly determine the spacetime dynamics.
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3.1 Fundamental ingredients and action

We consider a massless SO(1, 3) gauge theory in a four-dimensional manifold. The natural in-
gredients are the fundamental fields of the theory, namely the gauge field ωa

b and the ghost field
cab, and the invariant tensors ǫabcd and ηab. The most general action with vanishing ghost num-
ber, dimension four, polynomial on the fields and their derivatives and not explicitly dependent
on the metric or the vierbein is the topological part of the LC action, namely S0. Inhere, for
consistency, we define it as

S′
0 =

∫ (
z′1ǫabcdR

abRcd + z′2R
abRab

)
, (3.1)

where z′i are dimensionaless parameters which, eventually will be identified with the original
parameters zi of the topological action (2.2). Because the model is massless by construction,
there is no room for Sµ-like terms. Hence, the vierbein independence is ensured at this point.
The fundamental fields transform under BRST symmetry as

sωa
b = −Dcab ,

scab = −cacc
c
b , (3.2)

where s is the nilpotent BRST operator.

We also define a BRST quartet system of dimensionless 1-forms, namely,

sη̄a = σ̄a − cabη̄
b ,

sσ̄a = −cabσ̄
b ,

sσa = ηa − cabσ
b ,

sηa = −cabη
b . (3.3)

The 1-forms η̄a and ηa have fermionic statistics while σ̄a and σa have a bosonic one. Moreover,
it is clear from the transformations (3.3) that the quartet is a double BRST doublet. This means
that they are non-physical fields, belonging to the trivial sector of the BRST cohomology [19].
The existence of the quartet system allows the introduction of an extra term to the action

Striv = s

∫ {
ǫabcd

(
z′3R

abη̄cσd + z′4η̄
aσbσ̄cσd

)
+ z′5Rabη̄

aσb + z′6Dη̄aDσa+

+ z′7

[
η̄aσa

(
σ̄bσb − η̄bηb

)
+ η̄aσbη̄aη

b
]}

=

∫ {
ǫabcd

[
z′3R

ab
(
σ̄cσd + η̄cηd

)
+ z′4

(
σ̄aσb + η̄aηb

)(
σ̄cσd + η̄cηd

)]
+

+ z′5Rab

(
σ̄aσb + η̄aηb

)
− z′6 (Dσ̄aDσa −Dη̄aDηa)+

+ z′7

[
(σ̄aσa + η̄aηa)

(
σ̄bσb − η̄bηb

)
+ 2η̄aη

b (σ̄aσb − σ̄bσ
a) + η̄aηbη̄aηb

]}
, (3.4)

which is trivial with respect to the BRST cohomology. The parameters z′i are dimensionless
parameters2.

The action
ST = S′

0 + Striv , (3.5)

2Eventually, they will be associated with the Lovelock-cartan parameters zi appearing in (2.1).
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is dynamically empty because the topological term does not contribute to the field equations
and the BRST exact sector ensures that Striv is dynamically trivial. Moreover, the action
(3.5) is highly non-perturbative3 due to the absence of quadratic terms. We also remark that
this action is independent of the metric, the vierbein and the ghost fields. As a consequence
the independence of the vierbein field in the action can be taken as an independence between
the gauge symmetry and the manifold isometries. This property ensures that the dynamics of
spacetime is not related to any of the fields in (3.5).

3.2 Symmetries and Ward identities

All continuous symmetries of the action ST can be characterized in a functional way through
suitable Ward identities. It is useful to define a set of BRST invariant sources in order to control
the non-linear character of the BRST transformations of the fields through the external action

Sext = s

∫ (
Ω b
a ωa

b + L b
a cab −Xaη̄

a − X̄aη
a + Yaσ̄

a + Ȳaσ
a
)

=

∫ [
−Ω b

a Dcab − L b
a cacc

c
b +Xa

(
σ̄a − cabη̄

b
)
− X̄ac

a
bη

b − Yac
a
bσ̄

b+

+ Ȳa

(
ηa − cabσ

b
)]

, (3.6)

with
sΩ b

a = sL b
a = sXa = sX̄a = sYa = sȲa = 0 . (3.7)

The full action is then
Σ0 = ST + Sext . (3.8)

We now can list all Ward identities.

• Slavnov-Taylor identity:
S(Σ0) = 0 , (3.9)

where

S(Σ0) =

∫ (
δΣ0

δΩ b
a

δΣ0

δωa
b

+
δΣ0

δL b
a

δΣ0

δcab
+

δΣ0

δXa

δΣ0

δη̄a
+

δΣ0

δX̄a

δΣ0

δηa
+

δΣ0

δYa

δΣ0

δσ̄a
+

+
δΣ0

δȲa

δΣ0

δσa

)
. (3.10)

• Ghost equation: ∫
δΣ0

δcab
= ∆ b

a , (3.11)

where

∆ b
a =

∫ (
−L c

a cbc + L b
c c

c
a − Ω c

a ωb
c +Ω b

c ω
c
a +Xaη̄

b + X̄aη
b − Yaσ̄

b − Ȳaσ
b
)

, (3.12)

is a linear breaking.

3It is not difficult to check that the action (3.5), as it stands, has no quadratic terms in the fields. As
a consequence, there is no free theory to be defined (and no tree-level propagators). Hence, a perturbative
expansion around a free theory is not at our disposal. In fact, all non-vanishing terms in (3.5) are interacting
terms. A theory of this type is said to be highly non-perturbative. Of course, one can always define background
configurations and enforce a perturbative regime around these configurations.
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• Vierbein equation:
δΣ0

δea
= 0 . (3.13)

• Rigid supersymmetries:
R(i)Σ0 = ∆(i) , (3.14)

where i ∈ {1, 2, 3, 4}. The rigid supersymmetric operators are:

R(1) = σa δ

δηa
− η̄a

δ

δσ̄a
− Y a δ

δXa
− X̄a δ

δȲ a
,

R(2) = σ̄a δ

δη̄a
+ ηa

δ

δσa
−Xa δ

δY a
+ Ȳ a δ

δX̄a
,

R(3) = σ̄a δ

δηa
− η̄a

δ

δσa
− Ȳ a δ

δXa
− X̄a δ

δY a
,

R(4) = σa δ

δη̄a
+ ηa

δ

δσ̄a
+ Y a δ

δX̄a
−Xa δ

δȲ a
, (3.15)

while the only non-vanishing ∆(i) are

∆(1) = Xaη̄
a − X̄aη

a − Yaσ̄
a + Ȳaσ

a ,

∆(4) = −2Xaη
a , (3.16)

which are linear in the fields.

• Rigid fermionic equations:
Q(i)Σ0 = Λ(i) , (3.17)

where

Q(1) = −η̄a
δ

δηa
+ X̄a δ

δXa
,

Q(2) = ηa
δ

δη̄a
−Xa δ

δX̄a
, (3.18)

and the only nonvanishing breaking is

Λ(1) = X̄aσ̄
a − Ȳaη̄

a , (3.19)

which is linear in the fields.

• First U4(1) charge equation:
Q0Σ0 = 0 , (3.20)

where

Q0 = σa δ

δσa
− σ̄a δ

δσ̄a
+ ηa

δ

δηa
− η̄a

δ

δη̄a
+Xa δ

δXa
− X̄a δ

δX̄a
+

+ Y a δ

δY a
− Ȳ a δ

δȲ a
. (3.21)

Equation (3.20) expresses the existence of a quantum number associated with a U4(1)
symmetry among the quartet fields.
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• Second U4(1) charge equation:

Q̄0Σ0 = −2(Xaσ̄
a + Ȳaη

a) , (3.22)

where

Q̄0 = σa δ

δσa
− σ̄a δ

δσ̄a
− ηa

δ

δηa
+ η̄a

δ

δη̄a
−Xa δ

δXa
+ X̄a δ

δX̄a
+

+ Y a δ

δY a
− Ȳ a δ

δȲ a
. (3.23)

Equation (3.22) expresses the existence of a second quantum number associated with the
other U4(1) symmetry among the quartet fields. Combination of (3.20) and (3.22) results
in

Q
(i)
effΣ0 = (−1)i−1(Xaσ̄

a + Ȳaη
a) , (3.24)

where

Q
(1)
eff =

1

2

(
Q0 − Q̄0

)
= ηa

δ

δηa
− η̄a

δ

δη̄a
+Xa δ

δXa
− X̄a δ

δX̄a
,

Q
(2)
eff = Q

(1)
eff + Q̄0 = σa δ

δσa
− σ̄a δ

δσ̄a
+ Y a δ

δY a
− Ȳ a δ

δȲ a
. (3.25)

For completeness, we display the quantum numbers of the fields (including the vierbein) in Table
1 and the quantum numbers of the sources in Table 2.

The commutation relations between the Ward operators can also be obtained by a straight-
forward computation. Starting with the Slavnov-Taylor operator, for instance, let F be general
functional of even ghost and form number, we define the Slavnov-Taylor operator action on F
as

S(F) =

∫ (
δF

δΩ b
a

δF

δωa
b

+
δF

δL b
a

δF

δcab
+

δF

δXa

δF

δη̄a
+

δF

δX̄a

δF

δηa
+

δF

δYa

δF

δσ̄a
+

δF

δȲa

δF

δσa

)
.

(3.26)

Its linearized version reads

SF =

∫ (
δF

δΩ b
a

δ

δωa
b

+
δF

δωa
b

δ

δΩ b
a

+
δF

δL b
a

δ

δcab
+

δF

δcab

δ

δL b
a

+
δF

δXa

δ

δη̄a
+

δF

δη̄a
δ

δXa
+

+
δF

δX̄a

δ

δηa
+

δF

δηa
δ

δX̄a

+
δF

δYa

δ

δσ̄a
+

δF

δσ̄a

δ

δYa
+

δF

δȲa

δ

δσa
+

δF

δσa

δ

δȲa

)
. (3.27)

From (3.15), (3.26) and (3.27) we get

R(i)S(F) + SFR
(i)(F) = 0 . (3.28)

We also have the following commutation relations

(
R(i)

)2
= 0 ,

{
R(1), R(2)

}
= Q0 ,

{
R(1), R(3)

}
= 2Q(1) ,

{
R(1), R(4)

}
= 0 ,

{
R(2), R(3)

}
= 0 ,

{
R(2), R(4)

}
= 2Q(2) ,

{
R(3), R(4)

}
= −Q̄0 . (3.29)
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field ω c̄ e σ̄ σ η̄ η

Q-charge 0 0 0 -1 1 -1 1
Q̄-charge 0 0 0 -1 1 1 -1
Ghost no 0 1 0 0 0 -1 1
Form rank 1 0 1 1 1 1 1
Statistics 1 1 1 1 1 0 2

Table 1: Quantum numbers of the fundamental fields and the quartet system.

source Ω L X̄ X Ȳ Y

Q-charge 0 0 -1 1 -1 1
Q̄-charge 0 0 1 -1 -1 1
Ghost no -1 -2 0 -2 -1 -1
Form rank 3 4 3 3 3 3
Statistics 2 2 3 3 2 2

Table 2: Quantum numbers of the sources.

Moreover,

[
R(1), Q0

]
= 0 ,

[
R(2), Q0

]
= 0 ,

[
R(3), Q0

]
= 2R(3) ,

[
R(4), Q0

]
= −2R(4) ,

[
R(1), Q(1)

]
= 0 ,

[
R(1), Q(2)

]
= R(4) ,

[
R(2), Q(1)

]
= −R(3) ,

[
R(2), Q(2)

]
= 0 ,

[
R(3), Q(1)

]
= 0 ,

[
R(3), Q(2)

]
= R(2) ,

[
R(4), Q(1)

]
= −R(1) ,

[
R(4), Q(2)

]
= 0 ,

[
Q(1), Q(2)

]
= Q

(1)
eff ,

[
Q(i), Q0

]
= (−1)i−12Q(i) . (3.30)

The rich set of Ward identities ensures that Σ0 is the most general local classical action,
polynomial in the fields and their derivatives, with vanishing ghost number and independent on
the metric and the vierbein. Hence, the Ward identities ensure the triviality of the model as
well as the fact that the model has no relation with spacetime dynamics.

3.3 A remark about the BRST triviality

The quartet system (3.3) is composed by BRST doublets, and thus, these fields live at the trivial
sector of the BRST cohomology. Hence, Striv does not affect the physical dynamical content of
the topological action S0. Nevertheless, we can decompose s as

s = so + δ̃ , s2o = δ̃2 = {so, δ̃} = 0 , (3.31)

8



where so and δ̃ act on the fields as

soω
a
b = −Dcab ,

soc
a
b = −cacc

c
b ,

soη̄
a = −cabη̄

b ,

soσ̄
a = −cabσ̄

b ,

soσ
a = −cabσ

b ,

soη
a = −cabη

b , (3.32)

and

δ̃η̄a = σ̄a ,

δ̃σ̄a = 0 ,

δ̃σa = ηa ,

δ̃ηa = 0 . (3.33)

Moreover, it is easy to check that

soStriv = δ̃Striv = 0 , (3.34)

and

Striv 6= so (something) ,

Striv = δ̃ (something) . (3.35)

Thus, although s and δ̃ define the quartet system as trivial, they are not trivial with respect to
so. This means that these fields can be interpreted as physical under the so cohomology.

4 Introducing a massive constraint and the vierbein

4.1 Constraint action

The LC action can be recovered from Σ0 with the introduction of a set of suitable constraints.
The only demand is that the Ward identities could be broken only by linear terms in the fields.
Such requirement is essential for the extension of such Ward identities to the quantum level. In
fact, it is easy to see that these constraints are given by

σ̄a = σa = mea ,

η̄a = ηa = 0 , (4.1)

where m is a mass parameter4 and ea the vierbein field, which is taken to be a classical field5.
Within this construction, the vierbein must be a BRST invariant quantity,

sea = 0 . (4.2)

4This parameter will, eventually, be identified with µ appearing in (2.1).
5Although we are at classical level, we mean that the vierbein would remain classical in a possible quantum

scenario.
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field θ̄ θ λ̄ λ γ̄ γ ρ̄ ρ

Q-charge -1 1 -1 1 -1 1 -1 1
Q̄-charge 1 -1 -1 1 -1 1 1 -1
Ghost no -1 -1 0 0 -2 0 -1 1
Form rank 3 3 3 3 3 3 3 3
Statistics 2 2 3 3 1 3 2 4

Table 3: Quantum numbers of the constraint fields.

It is clear that these constraints introduce not only the vierbein, but also a mass scale.

To employ the constraint without spoiling the BRST triviality of Σ0, we introduce two extra
BRST quartet systems, namely,

sθ̄a = λ̄a ,

sλ̄a = 0 ,

sθa = λa ,

sλa = 0 , (4.3)

and

sγ̄a = ρ̄a ,

sρ̄a = 0 ,

sγa = ρa ,

sρa = 0 , (4.4)

which will work as Lagrange multipliers for the constraints (4.1). The quantum numbers of the
new quartet systems are displayed at Table 3.

Then, the constraint action is given by

Sc = s

∫ [
θ̄a (σ

a −mea) + θa (σ̄
a −mea) + γ̄aηa + γaη̄

a
]

=

∫ [
λ̄a (σ

a −mea) + λa (σ̄
a −mea) + θ̄a

(
ηa − cabσ

b
)
− γa

(
σ̄a − cabη̄

b
)
+

+ ρ̄aη
a + ρaη̄

a − θac
a
bσ̄

b + γ̄ac
a
bη

b
]
. (4.5)

The action of interest is then,
Σ = Σ0 + Sc , (4.6)

which is totally equivalent to the LC action (2.1) if a proper relation between {z′i,m} and {zi, µ}
is obeyed. The first step to check this is to set all external sources in (4.6) to zero. Hence, we
perform the elimination of the auxiliary fields defined in (4.3) and (4.4) by the implementation
of their field equations (see equations from (4.21) to (4.28)). This will lead to an action that is
totally equivalent to the Lovelock-Cartan action (2.1) if the gauge parameters {z′i,m} and the
LC parameters {zi, µ} are related accordingly to

z′1 = z1 , z′2 = z2 , z′3m
2 = z3µ

2 ,

z′4m
4 = z4µ

4 , z′5m
2 = z5µ

2 , −z′6m
2 = z6µ

2 . (4.7)

On the other hand, at quantum level the set {z′i,m} might need renormalization before being
identified with the LC parameters. A discussion about the quantum scenario can be found at
Sec. 5.1.
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4.2 Generalized Ward identities

The set of Ward identities enjoyed by the action (4.6) are listed here:

• Slavnov-Taylor identity:
S(Σ) = 0 , (4.8)

where

S(Σ) =

∫ (
δΣ

δΩ b
a

δΣ

δωa
b

+
δΣ

δL b
a

δΣ

δcab
+

δΣ

δXa

δΣ

δη̄a
+

δΣ

δX̄a

δΣ

δηa
+

δΣ

δYa

δΣ

δσ̄a
+

δΣ

δȲa

δΣ

δσa
+

+ λ̄a δΣ

δθ̄a
+ λa δΣ

δθa
+ ρ̄a

δΣ

δγ̄a
+ ρa

δΣ

δγa

)
.

(4.9)

• Ghost equation:
∫ (

δΣ

δcab
+ θ̄a

δΣ

δλ̄b

+ θa
δΣ

δλb

+ γ̄a
δΣ

δρ̄b
+ γa

δΣ

δρb

)
= ∆̃ b

a , (4.10)

where

∆̃ b
a = ∆ b

a −m

∫ (
θ̄a + θa

)
eb , (4.11)

remains a linear breaking.

• Vierbein equation:
δΣ

δea
= m

(
λ̄a + λa

)
, (4.12)

which is linearly broken.

• Rigid supersymmetries:
R̃(i)Σ = ∆̃(i) , (4.13)

where i ∈ {1, 2, 3, 4}. The rigid supersymmetric operators are6:

R̃(1) = R(1) + θa
(

δ

δγa
+

δ

δλa

)
+ γ̄a

(
δ

δθ̄a
−

δ

δρ̄a

)
−

(
θ̄a + ρ̄a

) δ

δλ̄a
− (λa − γa)

δ

δρa
,

R̃(2) = R(2) + γa
δ

δθa
− θ̄a

δ

δγ̄a
+ λ̄a δ

δρ̄a
− ρa

δ

δλa
,

R̃(3) = R(3) + γ̄a
δ

δθa
+ θ̄a

δ

δγa
− ρ̄a

δ

δλa
− λ̄a δ

δρa
, (4.14)

while
∆̃(i) = ∆(i) +Υ(i) , (4.15)

with

Υ(1) = m
(
θ̄a − θa + ρ̄a

)
ea ,

Υ(2) = mρae
a ,

Υ(3) = mρ̄ae
a , (4.16)

which are linear in the fields.
6The symmetry R(4) is quadraticaly broken, and thus, it is not an interesting identity for the model. As a

consequence, generalized versions of Q(2) and Q̄0 are not at our disposal in the full model. Obviously, since there
is no generalization of the Q̄0 symmetry, there is no place for generalizing Q

(i)
eff as well.
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• Rigid fermionic equation:
Q̃(1)Σ = Λ̃(1) . (4.17)

where

Q̃(1) = Q(1) +
(
θ̄a + ρ̄a

) δ

δρa
+ γ̄a

(
δ

δγa
+

δ

δλa

)
,

Λ̃(1) = Λ(1) −mγ̄ae
a . (4.18)

but is also linear in the fields.

• U4(1) charge equation:
Q̃0Σ = m

(
λ̄a − λa

)
ea , (4.19)

where

Q̃0 = σa δ

δσa
− σ̄a δ

δσ̄a
+ ηa

δ

δηa
− η̄a

δ

δη̄a
+Xa δ

δXa
− X̄a δ

δX̄a
+ Y a δ

δY a
− Ȳ a δ

δY a
+

+ λa δ

δλa
− λ̄a δ

δλ̄a
+ θa

δ

δθa
− θ̄a

δ

δθ̄a
+ ρa

δ

δρa
− ρ̄a

δ

δρ̄a
+ γa

δ

δγa
− γ̄a

δ

δγa
. (4.20)

Equation (4.19) still expresses the existence of a quantum number associated with a U4(1)
symmetry among the quartet fields, even though the symmetry is linearly broken.

• Field equations:

δΣ

δλ̄a

= σa −mea , (4.21)

δΣ

δλa

= σ̄a −mea , (4.22)

δΣ

δθ̄a
−

δΣ

δȲa

= 0 , (4.23)

δΣ

δθa
−

δΣ

δYa

= 0 , (4.24)

δΣ

δγ̄a
+

δΣ

δX̄a

= 0 , (4.25)

δΣ

δγa
+

δΣ

δXa
= 0 , (4.26)

δΣ

δρa
= ηa , (4.27)

δΣ

δρa
= η̄a . (4.28)

We can conclude at this point that the effect of the introduction of the constraints is that
most of the Ward identities are linearly broken. Moreover, the relations (3.28), (3.29) and (3.30)
are easily generalized by rejecting all relations of R(4), Q(2) and Q̄0.
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5 Discussion

5.1 Quantization attempts

In light of gauge theories, let us take a closer look at the action (2.1). First of all, we see that there
are no quadratic terms7 in (2.1), only interacting terms in the fields ω and e. This is a problem if
one plans to quantize the LC action because this property ruins the well established perturbative
program of QFT, unless a background is previously chosen. Background independence though
requires that such choice is arbitrary.

Another problem to be faced is the gauge fixing. A typical gauge fixing is obtained by fixing
the divergence of the gauge field. However, to define the divergence of a field, the Hodge dual
operator is required. Hence, an explicit dependence on the metric should be introduced.

The advantage in working with the action Σ instead is that the model can be interpreted as
a typical gauge theory for the gauge field ω and the fields defined in (3.3). Hence, the theory is
composed by a topological piece and a BRST trivial sector. The addition of the constraint (3.5)
introduces a coupling with the vierbein in such a way that (some of) the BRST trivial fields
are identified with the vierbein. Thus, the interpretation of the field ω as the spin-connection is
natural.

A quantum version of such model would also be highly non-perturbative since there are no
quadratic terms of ω in Σ. Moreover, the terms in the constraint action Sc are algebraic, i.e.,
there are no kinetic terms. To face this problem one should, perhaps, employ the strategies
developed in [20]. The authors in [20] claim that a BRST exact gauge fixing can be added to
the action, even though it depends explicitly on the spacetime metric. The reason is that, since
the gauge fixing is BRST exact, physical observables do not depend on the metric. In addition,
the gauge fixing term provides quadratic terms for ω, making a perturbative analysis possible.

Another important property of the model is the existence of a rich set of Ward identities,
which are broken linearly, at most. This is a very welcome property which ensures their validity
at quantum level [19]. In particular, the vierbein equation (4.12) ensures that the vierbein
should not appear at the counterterm. This last feature is quite strong and ensures that the
constraint could be employed at quantum level while maintaining e classical.

To understand what a quantum version of the model would mean, let us consider a gauge
fixed action Σ̃ = Σ+ s∆gf , enjoying the above discussed properties. The partition function can
be written as

Z̃ =

∫
DΦexp{iΣ̃(Φ, e)} , (5.1)

where DΦ ≡ DωDcDσ̄DσDη̄DηDθ̄DθDρ̄DρDγ̄DγDc̄Db while c̄ is the Faddeev-Popov anti-
ghost field and b the Lautrup-Nakanishi field enforcing the referred gauge fixing. The partition
function Σ̃ defines the quantum version of the model coupled to the vierbein classical field. Since
there is no previous dynamics for the spacetime, it is the model itself that defines the spacetime
dynamics. Moreover, the classical limit of such model would provide a classical gravity limit,
which is exactly the Lovelock-Cartan action (2.1). Hence, we have constructed a topological and
BRST exact quantum model that addresses dynamics to spacetime and has the Lovelock-Cartan
as its classical limit. In this limit, the identification of ω with the spin-connection and µ with
the Newton’s constant is natural.

7This is a problem that also appear at the pure Einstein-Hilbert action.
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5.2 Further symmetry aspects

Let us assume the existence of consistent BRST exact gauge fixed action which allows the
construction of a suitable partition function Z and the usual perturbative tools [20]. Moreover,
it is also reasonable to assume that the gauge fixing would not spoil any of the Ward identities8.
In addition, since the field equations (4.21) are exact or linearly broken, the validity of constraints
(4.1) at quantum level is ensured.

One effect of the constraint (4.6) is that, besides the BRST symmetry is preserved, its
decomposition (3.31) is not. In fact, it is easy to check that

soΣ = soSc = ∆b ,

δ̃Σ = δ̃Sc = −∆b , (5.2)

which is consistent with the relations (3.31) and sΣ = 0. As a consequence, we have the relations

sZ = 0 ,

soZ 6= 0 ,

δ̃Z 6= 0 . (5.3)

The field equations (4.21) can be written in the form of expectation values9 as

〈σa〉 = mea ,

〈σ̄a〉 = mea ,

〈ηa〉 = 0 ,

〈η̄a〉 = 0 ,

−〈σ̄a〉+ 〈cη̄a〉 = 〈sη̄a〉 ,

〈ηa〉 − 〈cσa〉 = 〈sσa〉 ,

−〈cηa〉 = 〈sηa〉 ,

−〈cσ̄a〉 = 〈sσ̄a〉 . (5.4)

Due to (5.3), the BRST operator s commute with the expectation values in (5.4). Hence, due to
the first four relations in (5.4) and the s invariance of the vierbein we have that 〈sη̄a〉 = 〈sηa〉 =
〈sσ̄a〉 = 〈sσa〉 = 0. Moreover, from (3.32) and (3.33), we have

〈soη̄
a〉 = −〈cabη̄

b〉 ,

〈soσ̄
a〉 = −〈cabσ̄

b〉 ,

〈soσ
a〉 = −〈cabσ

b〉 ,

〈soη
a〉 = −〈cabη

b〉 , (5.5)

and

〈δ̃η̄a〉 = 〈σ̄a〉 ,

〈δ̃σ̄a〉 = 0 ,

〈δ̃σa〉 = 〈ηa〉 ,

〈δ̃ηa〉 = 0 . (5.6)

8See previous section.
9The expectation values are taken with respect to the functional measure DΦ as defined in Sec. 5.1.
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Now, combining (5.4), (5.5) and (5.6), we get

〈soη̄
a〉 = −mea ,

〈soσ̄
a〉 = 0 ,

〈soσ
a〉 = 0 ,

〈soη
a〉 = 0 , (5.7)

and

〈δ̃η̄a〉 = mea ,

〈δ̃σ̄a〉 = 0 ,

〈δ̃σa〉 = 0 ,

〈δ̃ηa〉 = 0 . (5.8)

From (5.7) and (5.8) we understand that the breaking of the symmetries δ and so compensate
each other, as in (5.2), while the s symmetry remains a symmetry of the model. In addition, it
is clear that these breaks are directly related with the vierbein and the mass parameter since
so- and δ̃-exact terms attain a non-vanishing vacuum expectation value equal to mea.

6 Conclusions

We have constructed a massless gauge theory coupled with the vierbein field through algebraic
constraints quadratic in the fields. Essentially, the action is composed by a topological and a
BRST exact term. The constraints also carry a mass parameter which, eventually, is identified
with Newton’s constant. The interpretation of the model is that the gauge theory induces a
dynamics for the spacetime, resulting in the Lovelock-Cartan action [1].

The constraints, being quadratic in the fields, ensure the validity of a rich set of symmetries.
These symmetries, in the form of Ward identities, motivates the construction of a quantum
version of the model. However, due to intricacies such as the gauge fixing problem and quantum
stability, the formal analysis of the quantization of the model is left for a future paper.

Another possibility to be investigated is the generalization of the model to other dimensions,
at least at classical level.

Finally, an extra remark is that, at classical level, the model can be simplified to consider
only Lovelock gravity [2] or even general relativity. However, in a quantum version of such
simplified models, it seems that the Ward identities are not strong enough to block the other
terms of the Lovelock-Cartan. So, they would probably appear in the counterterm requiring
their introduction in the bare action.
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