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Abstract. We investigate the scenarios in which a holonomic versus a non-holonomic
frame description of gravity theories are equivalent. It turns out that classically, the
equivalence holds in a way that is independent of the particular dynamics and/or
spacetime dimension. This includes general metric-affine dynamics. A global bundle-
theoretical investigation is carried out, uncovering the equivalence principle as the
culprit. The equivalence holds as long as the equivalence principle holds. This is not
something to be expected when non-invertible configurations of the vielbein field are
taken into account. In such case, the gauge-theoretical description of gravity “unsolders”
from spacetime, and one has to decide if gravity is spacetime geometry or an internal
gauge theory.
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1 Introduction

General Relativity (GR) is based on A. Einstein’s minimalistic assumption that all
degrees of freedom of the gravitational field can be encoded in a single tensorial field:
the metric field g. This historically attracted immediate criticism. Most notably from
E. Cartan, who strongly advocated that metrical and affine structures are two logically
distinct concepts. In Cartan’s point of view, we should minimize ad hoc assumption
about the spacetime manifold. Thus, the degrees of freedom of the gravitational field
should be described, in generality, by g and an affine connection Γ as independent
fundamental fields.

Today, more than 100 year later, many so-called alternatives to GR have been
developed. Most of them falling under the umbrella of metrical (GR, f (R), etc.), scalar-
metrical (Brans-Dicke, Horndeski, etc.), vector-metrical (Will-Nordtvedt, Hellings-
Nordtvedt, etc.), bimetrical (Rosen, Rastall, etc.), affine (Teleparallel, Symmetric
Teleparallel, etc.), metric-affine (Einstein-Cartan (EC), metric-affine f(R), etc.), or
gauge-theoretical (Einstein-Cartan-Sciama-Kibble (ECSK), affine gauge theory, etc.).
Each of them claiming their own set of fundamental variables.

In teleparallelism [1, 2], there exists a single fundamental field: a metric-compatible
flat Γ. Gravity, in this formulation, is exclusively a manifestation of non-vanishing
torsion. In symmetric teleparallelism [3, 4], it is a torsion-free flat Γ, and gravity is
exclusively manifestation of non-vanishing non-metricity. In EC theory [5–7], metric-
affine f(R) [8–11], generic metric-affine [12], etc., g and Γ are the two independent
fundamental fields (Cartan’s philosophy). Gravity, in these, is a manifestation of the
non-vanishing curvature, torsion, and/or non-metricity of Γ.

In the gauge-theoretical branch [13–19], g and Γ are effective rather than fundamental
fields. This approach mainly consists of gauge theories for external symmetries —
usually the general affine group Aff (n), one of its subgroups, or their supersymmetric
extensions — and, in general, have a soldering form e and a gauge connection A as
set of fundamental fields [15]. Historically, the Lorentz group SO (1, 3) was the first
external group to be gauged, giving raise to the ECSK theory [20–23]. The generators
of so (1, 3) are antisymmetric, which makes Lorentz connections metric-compatible. In
ECSK theory, gravity is exclusively a manifestation of curvature and/or torsion.

Recently, the gauging of Spin(4) have also shown to produce gravitation [24–26]. In
spin base invariant models, the set of fundamental fields consists of Dirac matrices γ
(in substitution of e), satisfying the Clifford algebra {γ, γ} = 2g, and an Spin(4) gauge
connection Â. Analogously to ECSK theory, the generators of spin(4) are antisymmetric,
which makes Â metric-compatible as well. In spin base invariant models, gravity is a
manifestation of non-vanishing curvature and/or torsion of Â.

As one can see, the “Einstein versus Cartan debate” is pretty much alive [5, 27–33].
And, in despite of the very recent advances in observational physics — with emphasis in
very long baseline interferometry and multi-messenger astronomy —, a concrete answer
seems unlikely in the near future [34–45]. Under this light, a classification of all these
distinct description is of upmost importance.
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Classically, GR, Teleparallel and Symmetric Teleparallel are known to be equivalent
among themselves [46, 47]. As we review in more details in Section 3, EC theory, in
the presence of matter carrying vanishing hypermomentum currents, is also equivalent
to GR [5]. Analogously, metric-affine f(R) in vacuum is equivalent to GR [8]. This
last result can strike as quite surprising, given that the only case in which metrical
f(R) is equivalent to GR is when f(R) = R [48]. If ϕ ≡ f ′(R) is an invertible
field transformation1, then metrical f(R) is equivalent to the scalar-metrical ω = 0
Brans-Dicke theory with potential V (ϕ) ≡ R(ϕ)ϕ − f(R(ϕ)) [49]. Under the same
field transformation, metric-affine f(R), in the presence of matter carrying vanishing
hypermomentum currents, is equivalent to ω = −3/2 Brans-Dicke theory with potential
V (ϕ) [9]. These f(R) (in)equivalences smoothly hold in the limit f(R) → R [48].

Many gauge-theoretical models of gravity have classical equivalence to metrical, affine
or metric-affine models. For instance, the gauge theory for spacetime translations (R4),
first developed in [50], was shown to be equivalent to teleparallelism in [51–53] — see [1]
for a historical account. The ECSK theory, on the other hand, was born as a gauge
theory of gravity and is equivalent to EC theory. Spin base invariant gravity (with
vanishing spin torsion) and ECSK theory (in the presence of matter with vanishing
hypermomentum currents) are both equivalent to GR. In fact, these equivalences are so
widely spread in physics literature, that they are commonly referred to as just different
formalisms of a same underlying physical theory: the metrical or holonomic (g, Γ) versus
the vielbein or non-holonomic (e, A)2.

In this work, we avoid phrasing holonomic (g, Γ) versus non-holonomic (e, A) theories
of gravity as just different formalisms. We do not take the aforementioned equivalences
for granted, and we adopt the point of view that holonomic versus non-holonomic
theories of gravity are fundamentally distinct — unless unequivocally proven otherwise.
The reason for this is three-fold: (i) a classical equivalence might not hold quantum
mechanically; (ii) to the author’s knowledge, it is not known if this equivalence hold for a
general metric-affine dynamics and; (iii) it is known to fail on degenerate spacetimes [54–
56].

As one can imagine, point (i) is tricky to be addressed, as we do not know how to
properly formulate a quantum theory of gravity. However, attempts have been made
within a path integral approach. In [25], it was shown that the field transformation
given by {γ, γ} = 2g, introduces a trivial factor in the functional measure Dg (of
quantum GR), if transformed from the functional measure Dγ (of quantum spin base
invariant gravity with vanishing spin torsion). In [57], the quantum equivalence between
ECSK theory in vacuum and GR is also established. It, however, ignores non-globally
hyperbolic spacetimes and the particular ghost structure of each theory3. Reference [58]
shows that such oversights are irrelevant at 1-loop level. Nonetheless, functional
renormalization group (FRG) analyses show important qualitative differences in the
g versus e theory space, and their respective FRG flows [59]. More concretely in [60],

1 The prime ′ indicates derivative of the function with respect to its argument.
2 Or (γ, Â), in the case of spin base invariant gravity.
3 The former is invariant under Diff(4) ⋉ SO(1, 3), while the latter is under Diff(4).
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the ghost fields associated to the local Lorentz invariance are shown to contribute
quite significantly to the running of the Newton and cosmological constant in the
non-perturbative regime4 [60]. As one can see, the quantum equivalence is pretty much
an open issue even in the simplest models — further discussions can be found in [61–63].

Point (ii) is addressed in Section 4, and is the main original contribution of this
present work. We establish the equivalence between holonomic versus non-holonomic
gravity theories, in a manner independent of any particular metric-affine dynamics
and/or spacetime dimensions. This equivalence holds as long as the field transformations
in (18) hold. In Section 5, we clarify the global bundle-theoretical nature of these field
transformations and their relation to the equivalence principle. It happens that the
former is connected to the latter via a non-degenerate e. This brings us to point (iii).
It refers to regions of spacetime where e or, equivalently, the vielbein field eA

µ (x) — its
matrix representation — is non-invertible. As we discuss in more details in Section 5
and 6, on these regions, the gauge-theoretical description of gravity unsolders from
spacetime, and all the gauge-theoretical equivalences aforementioned are expected to
fail.

Sections 2 and 3 serve as prelude to the generalizations addressed in Section 4.
They contain a detailed review on holonomic versus non-holonomic variables, and the
reasons for the classical equivalence among GR, EC and ECSK theory in non-degenerate
spacetimes. Finally, in what follows, we consider the category of smooth n-dimensional
manifolds (C∞ n-manifolds), unless stated otherwise. Greek, lower-case and upper-case
Latin letters range from 0 to n − 1, unless stated otherwise.

2 Frames

A frame is generally considered as an ordered set of linearly independent vectors
spanning some vector space. Given such general definition, one can image the multitude
of different frames one could potentially define over a point x of a manifold X. Or, the
multitude of fields of frames one could potentially define over a neighborhood U ⊆ X
of x. Such fields are what E. Cartan first described in generality in [64] as “moving
frames” over U .

2.1 Holonomic

The most commonly defined frame is the so-called coordinate or holonomic frame.
Sometimes also called “world” or “spacetime” frame for reasons that will become clear
in a moment. At x, it is defined as a particular choice of ordered basis for TxX — the
tangent space of X at x. Such choice consists of derivations5 of the kind

∂µ|x [f ] ≡ ∂

∂xµ

(
f ◦ ϕ−1

)
|ϕ(x) , (1)

4 This also should not be seen as a definite answer, as the FRG framework relies on a specific truncation
and on the use of a Euclidean signature for the metric.

5 Derivations at a point x ∈ X are linear maps Dx : C∞ (X) → R acting on smooth functions on X
and satisfying Dx (f ◦ g) = Dxfg(x) + f(x)Dxg.
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acting on smooth functions f : U → R on U . Here, ϕ : U → A ⊆ Rn is a local chart
giving an ordered set of n Euclidean labels, ϕ(x) = {x0, . . . , xn−1}, to each point x in
U — xµ represents each of such labels.

We can write down a holonomic frame at x as the ordered set {∂0|x, . . . , ∂n−1|x}.
When the context is sufficiently clear, we might refer to it simply by its elements ∂µ|x
and vice-versa. Moreover, a field of holonomic frames over U is a map uniquely assigning
to each x ∈ U a frame ∂µ|x. Such field, henceforth denoted as ∂µ (x), is what Cartan
would call a tangent (or holonomic, in our language) moving frame.

Another very commonly defined frame is the so-called holonomic co-frame. It is
defined using functionals acting on TxX and spanning T ∗

x X — the co-tangent space of
X at x. The natural choice is dxµ|x, implicitly given by the relation dxµ|x (∂ν |x) = δµ

ν .
Let the ordered basis {dx0|x, . . . , dxn−1|x} of T ∗

x X be one such co-frame at x, henceforth
denoted by dxµ|x. A field of holonomic co-frames over U is denoted by dxµ(x), and we
call it a holonomic moving co-frame.

Holonomic frames explicitly use the concept of a local chart in their definition. As
a result, they — and, consequentially, their co-frames — have a unique behavior.
Consider another chart, ϕ′ : U → A′ ⊆ Rn, giving different Euclidean labels, ϕ′(x) =
{x0′

, . . . , x(n−1)′}, to the same region U in X. The composition map ϕ′ ◦ ϕ−1 : A → A′,
known as a transition function on U , represents for x the change of labels xµ 7→ xµ′ .
If such change happens to be bijective and smooth ∀ x ∈ U , then holonomic frames —
and their co-frames — all over this region suffer the action of an n × n invertible matrix.
Namely, for moving frames,

∂ν′(x) = Jµ
ν′ (x) ∂µ(x) ; Jµ

ν′ (x) ≡ ∂ν′xµ , (2)

and, for their co-frames,

dxν′(x) = Jν′

µ (x) dxµ(x) ; Jν′

µ (x) ≡ ∂µxν′
, (3)

where Jν′
µ (x) is the Jacobian matrix of ϕ′ ◦ ϕ−1|ϕ(x) and Jµ

ν′ (x) is its inverse. In other
words, holonomic frames and their co-frames are sensible to changes of local charts in X.
If this change occurs in an invertible and, at least C1 manner, then the corresponding
change in each TxU can be seen as an action of the general linear group GL (n,R). In
Physics, this intimate relationship between holonomic frames and the base manifold

— usually spacetime — is the reason why they are also called “world” or “spacetime”
frames.

2.2 Non-holonomic

In contrast, generic frames do not rely on ϕ for their definition. Unlike (1), most frames
are not sensible to changes of charts in X. This majority is referred to as non-holonomic,
and they are naturally present in physical theories with or without gravity. In the study
of a quantized Dirac field over a fixed spacetime 4-manifold, a relevant non-holonomic
moving frame is defined by a map giving to each event an ordered orthonormal basis in
C4. Physically, each of these frames can be interpreted as a Stern-Gerlach experimental
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apparatus, able to measure the spin orientation of the fundamental excitations of the
Dirac field — particle and anti-particle — at a specific point in space and time.

In the case of pure relativistic theories of gravity, which is the focus of the present
work, non-holonomic moving frames are brought into light by the geometric equivalence
principle [13, 14, 65]. Consider the moving frame τa(x) on U ⊆ X that uniquely
associates to each x ∈ U the ordered basis τa|x spanning the vector space Vx. We want
Vx to carry a linear action of SO (1, n − 1) — the isometry group of the n-dimensional
Minkowski space, M . In other words, τa(x) over U transforms according to

τa′(x) = Λb
a′(x)τb(x) , (4)

where Λb
a′(x) is a matrix representation of SO(1, n − 1). In principle, equation (4) is

not the result of any local change of chart on X. Thus, it is non-holonomic in nature.
It, however, can be interpreted as holonomic in M . If we forget its x ∈ X dependence,
we have the right to interpret (4) as the result of a change of global charts in M that
preserves the globally defined Minkowski metric η there. And there, τa as well as τa′ are
global (and constant) holonomic moving frames, orthogonal with respect to (w.r.t.) η.
This is exactly the kind of moving frames in which Special Relativity (SR) is defined.

Under this point of view, the equivalence principle is fulfilled in a generic curved
geometry if it is possible to define a τa(x) on every possible U ⊆ X. This effectively
covers all of X with frames in which Lorentz invariants can be defined. Physically,
they carry exactly the same meaning as in SR: a force-free clock and n − 1 linearly
independent rods at each point in spacetime6.

One can go ahead and quickly define the co-frame τa|x of τa|x as the functionals acting
on Vx and spanning V ∗

x such that τa|x (τb|x) = δa
b. It transforms non-holonomically

according to

τa′(x) = Λa′

b(x)τ b(x) , (5)

where Λb
a′(x) is the inverse matrix of Λa′

b(x).
We finally conclude this section with two remarks: (i) the discussion above is very

familiar. Equations (2) and (3) are nothing but the transformation rules of covariant
and contravariant coordinate vectors, respectively, exhaustively discussed throughout
the literature. Equations (4) and (5) should also look ordinary — very similar to the
transformation laws that the 1-form vielbein ea(x) ≡ ea

µ (x) dxµ and its inverse field
obey. However, the relation between τa(x) and ea(x) is a bit more subtle than just
an equality, which leads us to the second remark; (ii) these quantities and relations
belong to vector bundle structures over X [69]. We enter in more details about this
in Section 5. For the moment, we blindly use the fact that the non-holonomic group
SO(1, n − 1) can be enlarged to a non-holonomic GL(n,R) without compromising any
6 Unfortunately, the equivalence principle is vaguely defined throughout history and literature. There

are many (often inequivalent) ways to state it physically and/or mathematically [13, 65–68]. In this
work, we adopt the so-called “geometric” version because it is the one naturally related to the issue
at hand — vide Section 5.3. Additionally, this version is physically and mathematically unambiguous
as it builds upon the gauge principle, the Chern-Weil theory and the Erlangen program.
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aspect of the discussion above — including the validity of the equivalence principle.
This allows to extend the discussion in Section 3 to very general theories of gravity
— not just GR or its torsional extensions. To emphasize this change, capital Latin
letters represents non-holonomic GL(n,R) indexes while Greek letters stay exclusively
to holonomic GL(n,R) ones.

3 Gravity theories

3.1 Cartan’s philosophy

In holonomic moving frames, a fundamental ingredient of the Einstein-Palatini approach
is the understanding that a metric tensor field g(x) and an affine connection ∇ are à
priori two logically distinct concepts over a spacetime region U ⊆ X. Physically, g(x)
introduces how a set ∂µ(x) of observers on U , can perform “dot product” measurements
on pairs of vector fields. Indeed, g [∂µ, ∂ν ] (x) ≡ gµν (x) is a smooth function on U
associating a set of n (n + 1) /2 real numbers to each x ∈ U . Such numbers are
interpreted as “sizes” (µ = ν) and “angles” (µ ̸= ν) between ∂µ and ∂ν

7. Meanwhile,
∇ introduces a recipe on how vector fields can be differentiated along others. Indeed,
dxα (∇ [∂µ, ∂β]) ≡ Γα

βµ is another smooth function on U associating a set of n3 real
numbers for each x ∈ U , in general. Such numbers are interpreted as the infinitesimal
variation of ∂β along ∂µ as measured by dxα at each x.

It is true, however, that there is a canonical way to collapse affine concepts into
metrical ones. For instance, to impose that the only way ∂β can vary along ∂µ is by an
infinitesimal “rotation”, i.e., a specific first-order change in gβµ. Such change is what
is known as Christoffel symbols. A detailed analysis of the irreducible decomposition
of Γα

βµ reveals that this is equivalent to forbid ∂β to pick up any infinitesimal shear,
dilatation and/or displacement variations along ∂µ. Or, equivalently, that Γα

βµ satisfies
the following constraints:

T α
βµ ≡ Γα

βµ − Γα
µβ = 0 , (6a)

Qαβµ ≡ ∂αgβµ − Γν
βαgνµ − Γν

µαgβν = 0 , (6b)

where T α
βµ and Qαβµ are the so-called torsion and non-metricity tensor fields, respec-

tively. As one can see, this is indeed a very particular and constrained geometry, first
formulated by B. Riemann in 18548, and fully embodied in GR 60 years later.

On the other hand, other geometries such as Weitzenböck (R = 0, T ̸= 0, Q = 0),
Weyl (R = 0, T = 0, Q ̸= 0), Riemann-Cartan (R ̸= 0, T ̸= 0, Q = 0) or metric-affine
(R ≠ 0, T ̸= 0, Q ̸= 0) are as compatible with current observational data as the
Riemannian hypothesis [5, 27–47]. Em prol of generality, and advocating Cartan’s

7 From now on, whenever the context is sufficiently clear, the x dependence of fields will be omitted.
8 This work was never published by Riemann himself. He first laid out the foundational aspects of

what is now called a Riemannian n-manifold in a lecture, On the hypothesis that lie at the foundation
of geometry, at Göttingen University, as part of the qualification process for him to become a
Privatdozent (lecturer).
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philosophy, we consider gµν and Γα
βµ as completely independent fields, each carrying

part of the classical degrees of freedom of gravity. Unless, dynamically stated otherwise
via the field equations.

Following the above reasoning, the curvature tensor field

Rα
βµν = ∂µΓα

βν − ∂νΓα
βµ + Γα

ρµΓρ
βν − Γα

ρνΓρ
βµ (7)

should be considered as a function of Γα
βµ and its derivatives alone — not of gµν and

its derivatives. This tensor differs from the Riemann curvature since, again, we are not
making any assumption on how Γα

βµ differs from Christoffel symbols.

3.2 EC and ECSK theory

The dynamics of n-dimensional EC theory is defined by the n-dimensional Einstein-
Hilbert-Palatini (EHP) action,

SEHP
[
gµν , Γα

βµ

]
=
∫

X
dnx

√
−gRα

µανgµν . (8)

where gµν corresponds to a Lorentzian metric, while g is its determinant and gµν is its
inverse. The field equations obtained from the functional variation w.r.t. gµν and Γα

βµ

are, respectively,

−
√

−gGµν = 0 , (9a)

−
√

−g
[
T µ β

α − Q βµ
α + 1

2
(
gβµQ ν

αν + δ µ
α Qβ ν

ν

)]
= 0 , (9b)

where Gµν ≡ Rα
µαν − 1

2Rα
βαλgβλgµν is the post-Riemannian Einstein tensor; asymmetric

in µν.
The n-dimensional ECSK theory, which is formulated in non-holonomic frames, has

its dynamics defined by the so-called Vielbein-Einstein-Palatini (VEP) action,

SVEP
[
eA

µ, AA
Bµ

]
=
∫

X
dnxeF A

Bµν eµ
AeBν , (10)

where eA
µ is the vielbein field, e is its determinant and eµ

A is its inverse satisfying

eA
µeµ

B = δA
B , (11a)

eA
µeν

A = δν
µ . (11b)

Under a non-holonomic GL (n,R) action, they transform as

eA′

µ = ΛA′

BeB
µ , (12a)

eµ
A′ = ΛB

A′e
µ

B , (12b)

while under a holonomic one, they do as

eA
ν′ = Jµ

ν′ eA
µ ,

eν′

A = Jν′

µ eµ
A . (13a)

8



Furthermore, AA
Bµ is a GL (n,R) connection and its curvature,

F A
Bµν = ∂µAA

Bν − ∂νAA
Bµ + AA

CµAC
Bν − AA

CνAC
Bµ , (14)

is, unmistakably, a function of connection AA
Bµ and its derivatives alone.

The reader might notice that the above fields are being called non-holonomic when
they clearly also have holonomic indexes. As we clarify in Section 5, these fields are
local projections on X of truly non-holonomic quantities living on internal bundles.
Due to this mixed nature, gµν and its inverse are still present in the non-holonomic
framework — albeit not as a dynamical field. Additionally, an extra metric, gAB, and
its inverse gAB, are also present in order to “rise” and “lower” non-holonomic indexes9.

The field equations obtained from the functional variation w.r.t. eA
µ and AA

Bµ are,
respectively,

eδµνλ
αβγeα

Aeβ
Beγ

CF BC
νλ = 0 , (15a)

e
(
δµνλ

αβγeα
AeBβeγ

CT C
νλ − 2δµν

αβeα
Aeβ

CQ BC
ν

)
= 0 , (15b)

where some useful definitions were used10. In particular, δ
µ1···µp
ν1···νp is the generalized

Kronecker delta, ϵµ1···µn is the permutation symbol, T A
µν is the non-holonomic torsion

and Q AB
µ is the non-holonomic non-metricity associated to the connection AA

Bµ.
Notice how in non-holonomic frames, it is the vanishing of non-metricity — rather
than torsion — that is related to symmetries of the connection. Whenever Q AB

µ = 0,
then AAB

µ = −ABA
µ. From the symmetry group perspective, this is equivalent to a

contraction of GL(n,R) down to one of its (pseudo-)orthogonal subgroups. In our case,
SO (1, n − 1). This is, of course, the reason why we blindly did the opposite, in the end
of Section 2. We expand on that in Section 5.

3.3 EC vs. ECSK vs. GR

At first glance, the set of field equations (9) seems to deviate from n-dimensional
Einstein equations. Nonetheless, their physical solutions are still exclusively Einstein
n-manifolds. This is due to the fact that the EHP action (8) is explicitly invariant
under local projective transformations

gµν → gµν , (16a)
Γα

βµ → Γα
βµ + δα

βUµ . (16b)

9 The relation between these two metrics (equation (18a)) is addressed in Section 5.
10

δ
µ1···µp
ν1···νp ≡ 1

(n − p)!ϵ
µ1···µpλp+1···λnϵν1···νpλp+1···λn

,

T A
µν ≡ ∂µeA

ν − ∂νeA
µ + AA

BµeB
ν − AA

BνeB
µ ,

Q AB
µ ≡ AAB

µ + ABA
µ .

9



This is the so-called Rd-symmetry, where Uµ is an arbitrary vector field [70]. One can
show that to choose vanishing Qαβµ (and, consequentially, T α

βµ , via (9b)) or T α
βµ (and,

consequentially, Qαβµ, again, via (9b)) equates to setting Uµ = 0. In other words, these
choices are nothing but gauge choices for this projective symmetry. T α

βµ and Qαβµ are
pure Rd-gauge quantities and the traditional EH action — the action of GR — is just an
Rd-gauge fixed version of (8). This is true as long as we remain decoupled from matter
sources carrying non-vanishing hypermomentum currents. If, for instance, spinorial
matter is present, T α

βµ couples to the spin density tensor and assumes an Rd-gauge
invariant character. This results in a space of solutions containing Riemann-Cartan
n-manifolds, and (8) is an Rd-gauge unfixed version of EC theory, not GR.

The VEP action (10) also enjoys invariance under local projective transformations of
the connection, namely,

eA
µ → eA

µ , (17a)
AA

Bµ → AA
Bµ + δA

BVµ , (17b)

where Vµ is an arbitrary vector field. The previous scenario then repeats itself in a
non-holonomic fashion. Q AB

µ is a pure Rd-gauge quantity proportional to Vµ [70]. In the
Rd-gauge choice Vµ = 0, Q AB

µ and, consequentially, T A
µν , via (15b), vanishes. Again,

physical solutions are exclusively Einstein n-manifolds as long as there are no couplings
to matter sources carrying hypermomentum currents. Otherwise, the solutions are
Riemann-Cartan n-manifolds and (10) is an Rd-gauge unfixed version of ECSK theory.

We just argued that EC and ECSK theory, in non-degenerate spacetime regions
and in absence of hypermomentum currents, are both equivalent to GR. This was
due to the presence of a projective gauge symmetry. Therefore, it is reasonable to
expect EC and ECSK to be equivalent to each other modulus some gauge artifacts. The
non-holonomic to holonomic equivalence is achieved, at the level of field equations and
action functionals, by the set of field transformations

gµν = eA
µeB

νgAB , (18a)
Γα

µν = eα
AAA

BµeB
ν − eα

A∂µeA
ν . (18b)

Three points are important to be emphasized about them: (i) the Jacobian matrix of
such transformations is clearly not trivial; (ii) it is not even a square matrix; (iii) these
transformations assume eα

A exists.
Point (i) is of major importance in the study of this (in)equivalence within a path

integral quantization of both theories. It indicates the appearance of non-trivial
insertions if one transforms the functional measure from DeDA to DgDΓ. Point (ii)
reflects the one-to-many nature of the “inverse” transformations. While a non-holonomic
description has a unique holonomic counterpart, a holonomic description has infinitely
many non-holonomic versions. All of these versions are GL (n,R) gauge transformations
of each other — thus, define only one single physical theory. Finally, point (iii) can be
relaxed at the expense of a fixed space topology [71–76], and the equivalence between
EC and ECSK.

10



The above facts are well established and can be summarized in the following commu-
tative diagram:

(8) (10)

(9) (15)

δS=0

(18)

δS=0

(18)

. (Diagram 1)

It is not known in the literature how general this equivalence is. In particular, if it is valid
for general metric-affine dynamics — which lacks projective symmetry. As mentioned
in Section 1, we do expect it to break quantum mechanically. And, classically, we do
know Diagram 1 breaks in degenerate spacetime regions. The present work provides
a more complete picture of this scenario. In Section 4, we extend Diagram 1 to very
general metric-affine dynamics at any spacetime dimensions. The results make very
clear that an invertible vielbein is a general requirement for it to hold. Additionally,
in Section 5, we give its geometrical formulation, and clarify its underlying physical
meaning.

4 The general (in)equivalence

In order to address the extension of Diagram 1 to the most general metric-affine case,
it is convenient to abstract the situation to that of a field theory for the multi-field
ΦI , which single-handedly represents an arbitrary (but finite) number of scalar, vector,
2-tensor, 3-tensor, . . . , q-tensor fields11

ΦI ∈
{
ϕ1, . . . , ϕq0 , ϕ1

µ, . . . , ϕq1
µ , ϕ1

µν , . . . , ϕq2
µν , . . . , ϕ1

µ1···µq
, . . . , ϕqq

µ1···µq

}
. (19)

Its dynamics is encoded in the very general action functional containing up to the k-th
order derivative of ΦI ,

S
[
ΦI
]

=
∫

dnxL
(
ΦI , ∂µΦI , . . . , ∂µ1 · · · ∂µk

ΦI
)

. (20)

Hamilton’s principle states that classical configurations of ΦI are extrema of such
functional. Thus, solutions to the partial differential equation

δ
(k)
ΦI L = 0 , (21)

known as Euler-Lagrange equation. The notation employed for the Lagrange operator
reads

δ
(k)
ΦI ≡

k∑
j=0

∑
µ1≤···≤µj

(−1)j∂µ1 . . . ∂µj

 ∂

∂
(
∂µ1 . . . ∂µj

ΦI
)
 , (22)

11Here upper-case Latin letters do not simply ranger from 0 to n − 1, as it labels the fields within the
Φ multiplet.
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where the second sum is over the ordered set {(µ1, . . . , µj) ; µ1 ≤ · · · ≤ µj}. Whenever
this set is empty, which is the case for j = 0, the operator ∂µ1 . . . ∂µj

is the identity —
we end up with just a ∂/∂ΦI contribution.

It is a common exercise in field theory to consider the field transformations

Φ′J = Φ′J
(
ΦI
)

, (23)

whose Jacobian matrix

JJ
I ≡ ∂Φ′J

∂ΦI
(24)

is square and non-singular. As a result, Euler-Lagrange field equations (21) transform
covariantly,

JJ
I δ

(k)
Φ′J L′

(
Φ′J , ∂µΦ′J , . . . , ∂µ1···µk

Φ′J
)

= 0 . (25)

Since J−1 exists, it can be used in (25) to yield

δ
(k)
Φ′J L′ = 0 . (26)

This establishes the on-shell equivalence between ΦI and Φ′J theories12.
On the other hand, it is less standard to consider field transformations of the form

Φ′J = Φ′J
(
ΦI , ∂µΦI

)
. (27)

Its non-vanishing dependence on first order derivatives w.r.t. the fields

KJ µ
I ≡ ∂Φ′J

∂ (∂µΦI) (28)

results in the Jacobian matrix

Jµ =
JJ

I δ µ
0

KJ µ
I

 (29)

having twice as many rows than columns. This is a telltale sign of singular, non-invertible
transformations. More precisely, if one were to invert (27), one would quickly realize that
the system of equations that needs to be solved is undetermined, having infinitely many
solutions. Thus, this is precisely the abstraction of the gravitational case presented
in the end of Section 3, equation (18). It is a tediously long, but straightforward,
calculation to show that, under (27), Euler-Lagrange field equations (21) transform
according to

JJ
I δ

(k)
Φ′J L′ = ∂µ

[
KJ µ

I δ
(k)
Φ′J L′

]
. (30)

12This latter step is what fails in degenerate spacetime regions.
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To the author knowledge, equation (30) is not present in the literature and clearly
a non-covariant behavior. At this point, ΦI and Φ′J theories have no chance to be
equivalent, even if J−1 were at our disposal.

In order to regain some sense of covariance, the right-hand side of (30) has to vanish —
KJ µ

I δ
(k)
Φ′J L′ has to be divergence-free. This is trivially achieved in the case of KJ µ

I = 0,
which corresponds to the canonical field transformations (23). The gravitational case,
on the other hand, has a non-vanishing K1 µ

2 . At first, this raises the suspicion that ΦI

gravity theories cannot possibly be equivalent to Φ′J ones.
Let us take ΦI ∈

{
eA

µ, AA
Bµ

}
, Φ′J ∈

{
gµν , Γα

βµ

}
and the field transformations of the

kind (27) to be (18). This yields the Jacobian matrices

JJ
I =

 ∂gµν

∂eA
γ

∂Γα
βµ

∂eA
γ

0 ∂Γα
βµ

∂AA
Bγ

 , (31)

and

KJ λ
I =

0 ∂Γα
βµ

∂(∂λeA
γ)

0 0

 . (32)

Thus, the transformed Euler-Lagrange field equations (30) reduce to(
∂gµν

∂eA
γ

δ(k)
gµν

+
∂Γα

βµ

∂eA
γ

δ
(k)
Γα

βµ

)
L′ = ∂λ

 ∂Γα
βµ

∂
(
∂λeA

γ

)δ
(k)
Γα

βµ
L′

 , (33a)

∂Γα
βµ

∂AA
Bγ

δ
(k)
Γα

βµ
L′ = 0 . (33b)

Individually, the transformed Cartan-like field equation (33b) does behave covariantly
due to the vanishing of J2

1 , K2 λ
1 and K2 λ

2 . The transformed Einstein-like field
equation (33a) does not. Collectively, (33b) and (33a) do form a system. And, a
solution for (33b) has to be a solution for (33a). From (33b), it is clear that δ

(k)
Γα

βµ
L′ = 0

if ∂Γα
βµ/∂AA

Bγ is an invertible matrix. If so, δ
(k)
Γα

βµ
L′ also vanishes in (33a), thereby

killing all undesirable terms. Thus, Diagram 1 can be extended to very general metric-
affine dynamics.

In conclusion, if we consider

δ
(k)
eA

γ
L = 0 , (34a)

δ
(k)
AA

Bγ

L = 0 , (34b)

for whichever chosen L, and apply field transformations (18), we end up with

δ(k)
gµν

L′ = 0 , (35a)

δ
(k)
Γα

βµ
L′ = 0 , (35b)

13



as long as ∂Γα
βµ/∂AA

Bγ and ∂gµν/∂eA
γ (both related to eB

µ) are non-singular. Thus,
gravity theories, formulated in holonomic versus non-holonomic frames, are on-shell
equivalent in a way that is independent of the particular metric-affine dynamics and/or
spacetime dimension. This result is largely due to the functional form of field transfor-
mations (18) and the invertible vielbein condition.

5 The geometrical framework

In other to explain the functional form (18), and clarify its physical meaning, we need to
investigate the fiber bundle structures over X — implicitly used in both the holonomic
and non-holonomic frame descriptions of gravity. We formalize holonomic quantities in
terms of natural bundles, and non-holonomic ones in terms of soldered bundles.

5.1 Natural bundles

Consider the set TX ≡ {⊔xTxX ∀ x ∈ X}, and the map πT X : TX → X. TX is
called the total space13, and it inherits a 2n-manifold structure from X; πT X is called
the projection map, and it is smooth and surjective. The typical fiber, πT X

−1 (x),
is isomorphic to TxX and, as such, carries a GL (n,R) representation reminiscent of
smooth changes of coordinates — mentioned in Section 2. This later statement is the
archetypical examples of a categorical lift. The structure just described is known as the
tangent bundle of X.

Morphisms in the category of smooth manifolds induce morphisms in the category
of smooth vector bundles via a functor F [77]. This can be neatly captured by the
commutative diagram

FX FX ′

X X ′

Ff

πFX πFX′

f

. (Diagram 2)

The bundle morphism Ff is said to be the functorial lift of the morphism f . Bundles
above X constructed in this functorial way are said to be natural [78]. The tangent bun-
dle is the natural bundle obtained by considering X ′ = X, f as a local automorphism14

and F as the tangent (pushforward) map T . On U , this translates to transition functions
xν′ (xµ) lifting to automorphisms Jµ

ν′ (x) on TxU . Since the group of automorphisms of
the typical fiber is isomorphic to the structure group of the bundle itself, the tangent
bundle is constrained to have GL (n,R). In other words, lAut (X) functorially lifts to
TX as GL (n,R). Other natural bundles on X can be defined by only changing the
typical fiber to another representation space of GL (n,R). The co-tangent bundle T ∗X

13Sometimes we might use the total space to refer to the whole bundle structure.
14Defined as map from X to X which is necessarily a diffeomorphism only on a chart, i.e., f is not

necessary a diffeomorphism but f |U : U → f(U) is.

14



is the one with typical fiber isomorphic to T ∗
x X15 and, more generally, the (r, s)-tensor

bundle T s
r X is the one with typical fiber isomorphic to TxX⊗r ⊗ T ∗

x X⊗s 16.
A right inverse for πT X is a tangent vector field on X. It is called a section of this

bundle, and defined as a map σT X : U ⊆ X → TX such that πT X ◦ σT X = 1U . There
might be topological obstructions for the set equality to hold for a nowhere vanishing
σT X . Most nowhere vanishing sections are local (U ⊂ X). Global ones (U = X) are
only guaranteed to exist in trivial bundles — TX needs to be globally diffeomorphic
to X × Rn. The canonical example is given by the hairy ball theorem. No nowhere
vanishing tangent vector field globally exists on the S2. TS2 is not diffeomorphic to
S2 × R2. The opposite is true for S3. TS3 ∼= S3 × R3, and it is one reason why it can
accept an SU(2) Lie group structure.

The above results are closely connected to the value of their Euler characteristic:
χ (S2) = 2 and χ (S3) = 0. In such topologies, χ (X) acts as the obstruction for the
existence of any nowhere vanishing global section in TX. It so happens that χ (Sn) = 0,
if n is odd; and χ (Sn) = 2, if n is even. In the former case, n ∈ {1, 3, 7} are especial
since they are the only ones with TSn ∼= Sn × Rn.

The space of all sections in TX is denoted as Γ (TX). One can infer now that the
metric field g(x) is an element in the symmetric subspace Γ(Λ2X) ⊂ Γ(T 2

0 X) — and,
depending on the topology of X, χ (X) might act as an obstruction for it to be a
nowhere vanishing globally defined field.

A very important natural bundle is the frame bundle π : FX → X of TX. The
structure group and base space are the same as before, but the total space FX is
defined as the set of all tangent frames on X. In particular, the typical fiber FxX is
diffeomorphic to GL (n,R) itself. This makes FX n (n + 1)-dimensional. Furthermore,
FxX carries a smooth and free right action of GL (n,R). These facts make FX into
a GL (n,R) principal bundle over X. This is the space where holonomic frames live
in. In particular, ∂µ|x is an element of FxX and the holonomic moving frame ∂µ (x) is
an element of Γ (FX). Finally, transformation laws (2) and (3) are just a reflex of the
naturalness of this bundle, i.e., that f canonically lifts to it and to the co-frame bundle
F ∗X, respectively.

FX has such importance because all other natural vector bundles over X can be
derived from it via the associated vector bundle construction. Let ρ : GL (n,R) →
GL (V) be a representation of GL (n,R) on a vector space V. One can show that
the product space FX × V, modulus the equivalence relation (u, v) ∼ (ug, ρ (g−1) v),
where u ∈ FX, v ∈ V, and g ∈ GL (n,R), does form a vector bundle over X. This
bundle, πA(V) : A (V) → X, where A (V) ≡ FX × V/ ∼, is said to be a vector bundle
associated to FX. Clearly, there are as many associated vector bundles to FX as there
are representation spaces of GL (n,R). In particular, A (TxX) is an associated vector
bundle trivially isomorphic to TX, A (T ∗

x X) is to T ∗X, and so on and so forth. In this
sense, all natural vector bundles are derived from FX — they are natural because FX
is.

15Categorically, F is the co-functor T ∗ of T .
16Categorically, F is the tensor products of functors T s

r ≡ T ⊗r ⊗ T ∗⊗s

.
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If X is paracompact, FX can have its own tangent bundle decomposed into vertical
and horizontal sub-bundles, TFX = TV FX ⊕ THFX. While TV FX is uniquely defined
as the kernel of π∗, its complement THFX is not. Given a ρ-equivariant17 gl (n,R)-
valued global section ω in Γ (T ∗

V FX), which is the identity on Γ (TV FX), the choice
Γ (THFX) = ker (ω) can be made. ω is a connection form on FX. This construction
gives a recipe on how to differentiate ρ-equivariant V-valued k-forms into ρ-equivariant
V-valued (k + 1)-forms on FX. ω is itself an example of such forms. However, it is
vertical18, which means it differentiates itself in an unusual way, resulting in

Ω ≡ dω + 1
2 [ω, ω] , (36)

where d is the exterior derivative and [ , ] is the graded Lie bracket. Ω is a ρ-equivariant
gl (n,R)-valued 2-form: the curvature form of ω. This process of differentiation abhors
verticality. Ω is horizontal19, and so is the result of every differentiation via ω. Thus, such
procedure is better understood as an operation on the space Γ

(
Λ∗

H,ρFX
)

of horizontal
ρ-equivariant V-valued forms on FX. Let ρ∗|1 : gl (n,R) → gl (V) be pushforward map
via ρ at the identity element 1 in GL (n,R). Then, ω indeed defines an endomorphism

D = d + ρ∗|1 (ω) (37)

on Γ
(
Λ∗

H,ρFX
)

that maps Γ
(
Λk

H,ρFX
)

into Γ(Λk+1
H,ρ FX) while satisfying the graded

Leibniz rule. This is an exterior covariant derivative on FX.
The space Γ

(
Λ∗

H,ρFX
)

plays a pivotal role since an isomorphism exists between it
and the space Γ (A (V) ⊗ Λ∗X) of V-valued forms on X. Using such map, D descends
from FX to each A (V) as an operator DA(V) that, instead, differentiates elements
in Γ

(
A (V) ⊗ ΛkX

)
into elements in Γ

(
A (V) ⊗ Λk+1X

)
. Now, one is able to guess

that ∇, introduced in Section 3, is just DT X composed with the interior product ⌋ in
Γ (Λ∗X),

∇ ≡ ⌋DT X . (38)

This properly sends elements from Γ (TX ⊗ TX) to Γ (TX).
Ω ∈ Γ

(
gl (n,R) ⊗ Λ2

H,ρFX
)

descends to an element R ∈ Γ (gl (n,R) ⊗ Λ2X). R

is the familiar gl (n,R)-valued curvature 2-form on X — the geometrical structure
behind Rα

βµν . On the other hand, ω cannot descend to X via the associated bundle
construct since it is a vertical form. Nevertheless, one can always use a section
σF X : U ⊆ X → FX to pull it down from Γ

(
Λ1

V,ρFX
)

to Γ (gl (n,R) ⊗ Λ1U),

Γ ≡ σF X
∗ω , (39)

17A V-valued form ϕ on FX is ρ-equivariant if, for every g ∈ GL (n,R),

R∗
g (ϕ) = ρ

(
g−1)ϕ ,

where R∗
g is the pullback via the right action Rg of GL (n,R) on FX.

18Vertical means it annihilates sections in Γ (THFX).
19Horizontal means it annihilates sections in Γ (TV FX).
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where σF X
∗ is the pullback map. Γ is the gl (n,R)-valued 1-form on U which we would

call as a GL (n,R) gauge field in the traditional sense — the geometrical structure
behind the affine connection Γα

βµ.
As one can see, gravity is described by a peculiar kind of gauge theory, in the sense

that the fundamental fields capture the dynamics of the base space X itself. The
holonomic way accomplishes this by defining the theory directly on natural bundles.
After all, these are the bundles having, by definition, functorial lifts of lAut (X) — thus,
a direct connection with X. However, this is not the only way to do it.

5.2 Soldered bundles

Consider that X has such topology that, given a manifold P and a Lie group G, the
non-trivial principal G-bundle π′ : P → X also exists over it. Moreover, that there
exists the map h : FX → P such that π = π′ ◦h. Again, this principal bundle morphism
can be neatly captured by the commutative diagram

FX P

X X

h

π π′

1X

, (Diagram 3)

where 1X is the identity automorphism on X. h is called vertical since it covers 1X .
It is important to note that, at each fiber π−1(x), h defines a homomorphism of Lie

groups h|π−1 : GL (n,R) → G. Whenever h|π−1 is the actual identity automorphism
on GL (n,R), we call h equivariant. If this is the case, P , in Diagram 3, is said to be
soldered to X. Let us assume so, and that ω′ is a connection on P . This connection
also labeled as soldered since

ω = h∗ω′ , (40)

where h∗ is the pullback map via h.
It is a trivial fact that FX is soldered to itself via vertical equivariant automorphisms.

It corresponds to the case where P = FX. In such scenario, equation (40) represents a
gauge transformation on FX. Indeed, the set of all vertical equivariant automorphisms
on FX, denoted as G (FX), is the set of all gauge transformations on FX [79, 80].

Moving on, consider a representation ρ′ : G → GL (V ′) of G on V ′. Exclusively on
soldered G-bundles, there exists an element θ ∈ Γ

(
Λ1

H,ρ′P
)

such that dim (V ′) = n. Let
D′ be the exterior covariant derivative associated with ω′, the so-called torsion form
Θ ∈ Γ

(
Λ2

H,ρ′P
)

can be defined as

Θ ≡ D′θ . (41)

Via the associated vector bundle construction regarding ρ′, θ as well as Θ descend to
A′ (V ′), respectively, as an element e ∈ Γ (A′ (V ′) ⊗ Λ1X), which can be regarded as a
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vertical vector bundle isomorphism,

TX A′ (V ′)

X X

e

πT X πA′(V′)
1X

, (Diagram 4)

and an element T ∈ Γ (A′ (V ′) ⊗ Λ2X), given by

T = DA′(V ′)e . (42)

e is the well-known V ′-valued soldering 1-form — the geometrical quantity behind
eA

µ. T is the V ′-valued torsion 2-form on X — the geometrical quantity behind T A
µν .

These, of course, lack in the traditional (unsoldered) gauge-theoretical framework of
particle physics.

As a consistency check, consider, again, P = FX. Moreover, consider FX to be
trivially soldered, i.e., G (FX) contains only the trivial gauge transformation ω = 1∗

F Xω′.
To fulfill condition dim (V ′) = n for θ, let V ′ ≃ TxX. In such case, e, of course, only
corresponds to the vertical identity transformation 1T X on TX. This tautology implies
that T reduces to

T = DT X1T X ,

= DT X (∂α ⊗ dxα) ,

= ∂α ⊗ (DT Xdxα) ,

= ∂α ⊗ dxβ ∧ Γα
β , (43)

where the definition dxβ ∧ Γα
β ≡ ρ∗|1 (ω) dxα, in which ∧ is the wedge product, was

used. Then,

T (∂µ, ∂ν) = ∂α ⊗ dxβ ∧ Γα
β (∂µ, ∂ν) ,

= ∂α ⊗
(
δβ

µΓα
βν − δβ

ν Γα
βµ

)
,

= ∂α ⊗
(
Γα

µν − Γα
νµ

)
, (44)

which is in agreement with the definition in (6a). One can say that the torsion tensor
collapses to the antisymmetric sector of Γµν once FX is trivially soldered to itself —
which is the case for holonomic theories of gravity.

Finally, consider P = FM , where FM is the frame bundle of the n-dimensional
Minkowski space M . It is constructed over M in the same way FX is constructed
over X. Thus, G is forced to equal GL (n,R). From the perspective of X, elements
in FM , in its associated vector bundles, A′ (V ′), and the GL (n,R) actions over them,
are all non-holonomic in nature. We discussed this first in Section 2. In the language
developed here, this means that these are not natural bundles over X.

The non-holonomic frame τA|x, also introduced in Section 2, can be regarded as an
element of FM over X. The moving frame τA (x) is an element of Γ (FM) over X.
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The non-holonomic GL (n,R) connection form ω′ has local projection A and associated
curvature F — the geometrical quantities behind AA

Bµ and F A
Bµν , respectively. These

are the gauge-theoretical fields used in the ECSK theory of gravity and its generalizations,
vide (14)20. The vector space Vx that τA|x spans is a fiber of A′ (V ′) over x such that
dim (V ′) = n. In fact, V ≡ ⊔xVx is exactly the kind of vector bundle present in Diagram
4. Clearly, Vx is just TxM , and V is just TM .

In order to clarify how e solders non-holonomic frames on X, consider τA ∈ Γ (T ∗M)
and the map e∗ : T ∗M → T ∗X where[
e∗
(
τA
)]

(∂µ) = τA [e (∂µ)] . (45)

Notice that e maps holonomic frames into non-holonomic ones while e∗ glues non-
holonomic co-frames on X. In practice, due to the contravariant nature of the pullback
map, the roles of eA

µ and e∗ A
µ get flipped. Indeed,

e (∂µ) = eA
µτA ,

= e∗ A
µ τA , (46)

while

e∗
(
τA
)

= e∗ A
µ dxµ ,

= eA
µdxµ . (47)

where, as already mentioned, the vielbein field eA
µ ≡ τA [e (∂µ)] is the matrix representa-

tion of e in the basis τA ⊗ dxµ. And, e∗ A
µ ≡

[
e∗
(
τA
)]

(∂µ) is the matrix representation
of e∗ in dxµ ⊗ τA.

Equation (45), stating that e∗ A
µ = eA

µ, was used in both (46) and (47). In the
literature, e∗

(
τA
)

is presented as the 1-form vielbein eA while e (∂µ) is mostly ignored.
The former is the “subtle” relation between eA and τA mentioned in the end of Section 2.
Additionally, as long as e is an isomorphism, inverses exist for it and its pullback.
Explicitly, eµ

A ≡ dxµ [e−1 (τA)] and e∗ µ
A ≡ [e∗−1 (dxµ)] (τA). Moreover,

e−1 (τA) = eµ
A∂µ ,

= e∗ µ
A ∂µ , (48)

while

e∗−1 (dxµ) = e∗ µ
A τA ,

= eµ
AτA . (49)

The analog of equation (45) for e−1 states that e∗ µ
A = eµ

A and was used in both (48)
and (49). It is easy to show that compositions e∗−1 ◦ e∗ and e−1 ◦ e are behind
equations (11a) and (11b), respectively. In literature, however, it is commonplace to
define e−1 (τA) as the 1-vector eA such that eA (eB) = δA

B . This latter equation does
not hold by itself, but it is a consequence of (11a) being true.
20Although A is a flat connection (F = 0) if FM is seen as a bundle over M , the same is not necessarily

true if FM is seen as a bundle over X.

19



5.3 The geometric equivalence principle

The last geometrical structure we need to address is that of a metric. In the beginning
of this section, we commented on how a metric tensor on X is an element of Γ(Λ2X).
Such a metric lives on a natural bundle and thus is holonomic in nature. Analogous
definition can be made on using any other vector bundle over X. For instance, a
non-holonomic metric g′ on X can be defined as an element living in Γ(Λ2A′ (V ′)).

We also made comments on how there might be topological obstructions for a local
section to be smoothly glued together to form a global one. On certain topologies,
χ (X) plays that role. Luckily, if X is paracompact, partition of unity can be used to
always extend a local Riemannian metric into a global one on whatever vector bundle
above X. Thus, global Riemannian metrics always exist at our disposal. The downside
is that they are all geodesically complete. Incapable to provide good classical models
for cosmology and/or black hole physics. Unluckily, obstructions to extend a local
Lorentzian metric into a global one are much more common. Paracompactness is enough
for non-compact topologies. But on compact ones, it needs to be supplemented with
the condition χ (X) = 0. Famously, even-spheres do not accept a Lorentzian structure.

The existence of metric structures on X has interesting consequences for FX and
P . Via the Gram-Schmidt process, g and g′ allow us to define in each FxX and Px,
respectively, subsets F O

x X ⊂ FxX and P O
x ⊂ Px of orthogonal frames. The disjoint

union in all x defines F OX and P O. One can show that these do have the structure
of embedded principal sub-bundles within FX and P , respectively, with structure
group O (p, q) ; p + q = n, if the metrics g and g′ have signature (p, q). If Riemannian
(p = 0), then the structure subgroup is O (n). If Lorentzian (p = 1), then O (1, n − 1).
On orientable topologies, GL (n,R) can first be reduced to the orientation-preserving
GL+ (n,R) (positive determinant), yielding SO (p, q).

The proof of existence on paracompact X rely on the quotient bundles FX/O (p, q)
and P/O (p, q) admitting global sections, i.e., being trivial. This is true whenever the
coset space GL (n,R) /O (p, q) is contractible. If p = 0, this space is homotopic to Rn.
If p = 1, it is homotopic to RP n−1 — the (n − 1)-dimensional real projective space.
The former is clearly contractible, the latter is not. π1 (RP n−1) ≃ Z2 and πk (RP n−1) ≃
πk (Sn−1) for k > 1. This is the bundle-theoretical reason why Riemannian structures
always exist while Lorentzian ones do not.

Regardless of signature, whenever a metric structure exists, the embeddings F OX →
FX and P O → P also do. Ultimately, this is the justification, omitted from Section 2,
that allowed us to extend the transformation group of non-holonomic frames from
SO (1, n − 1) to GL (n,R): we assumed the existence of η. From a physical standpoint,
the converse interpretation is promising. One can argue that whenever the quantum
structure of spacetime changes to that of a smooth manifold X with appropriated
topology, then a corresponding symmetry breaking GL (n,R) → O (p, q) occurs in FX
and P . This gives a comprehensive scenario in which metric structures arise dynamically,
as Higgs-Goldstone type of fields [13, 14, 81]. Theories of induced gravity employing
similar mechanism have been extensively explored in [82–93].

It should be apparent that to have a bundle of orthogonal frames by no means equates
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to have an everywhere flat Minkowski structure η. And, to realize the equivalence
principle, we do need plug FM onto X. FM is first conceived over the Minkowski space
M . The latter is paracompact and non-compact, thus a global Lorentzian metric g′

definitely exists on it. Further, M is homotopic to Rn and thus contractible. This means
that any bundle over it is trivial. Consequentially, ω′ can be chosen as the canonical flat
connection. By postulating that this connection is torsionless and metrical, we arrive
at the Riemannian hypothesis that states that ω′ is derived from the metric g′ = η.

The existence of η guarantees the existence of the global Lorentz frame τa. This is
realized via the embedding F OM → FM , in which SO(1, n − 1) is structure subgroup.
In τa, η assumes its well-known diagonal form η (τa, τb) = ηab ≡ diag (−1, +1, . . . , +1).
By plugging FM onto X via the projection π′, we essentially localize on X the global
Minkowskian structures just mentioned. In summary, the equivalence principle is
geometrically encoded in the following diagrams:

GL (n,R) FX FM F OM SO(1, n − 1)

X X X

h

π

q

π′ π′′

1X 1X

(Diagram 5)

or, equivalently, in terms of vector bundles,

GL (n,R) TX TM T OM SO(1, n − 1)

X X X

e

πT X

q′

πT M π
T OM

1X 1X

, (Diagram 6)

where q and q′ are bundle contractions. Clearly, it is the existence of the bundle
isomorphism h — or, equivalently, e — that allow us to formulate gravity on other
bundles beyond natural ones. In Section 4, we proved that these different constructions
are dynamically equivalent, in the classical realm, if the diagrams above hold true.

We are ready to state equations (18) in a geometrical fashion. They correspond to
the pullback along e of the non-holonomic metric η and connection A to the holonomic
metric g and connection Γ, respectively,

g = e∗η , (50a)
Γ = e∗A , (50b)

much in the spirit first presented in [94]. Clearly, equations in (50) are a reincarnation
of equation (40), but on an associated vector bundles, and including the metric field.
Nevertheless, we again stress that, e is not an isomorphism from TX to itself, but an
isomorphism from TX to TM . Otherwise, e would be the functorial lift of lAut (X),
according to Diagram 2, and its matrix representation would be Jν′

µ (x). This is an
important conceptual distinction that, in practice, only amount for a substitution from
Jν′

µ (x) to eA
µ(x) in the transformation law for tensor and connection fields. Since
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equations of motion should be covariant under the latter, it is also covariant under the
former. This is what geometrically underpins our analytical result of Section 4.

Let U be a region such that

det
[
eA

µ(x)
]

= 0 ∀ x ∈ U . (51)

Over such degenerate region, e is not an isomorphism. Thus, TM cannot be realized as
a bundle soldered to TX, as defined above. Physically, in U the equivalence principle
fails to hold.

6 Conclusions

In the present work, we extended the known classical equivalence between the non-
holonomic SVHP [e, A] versus the holonomic SEHP [g, Γ] theory of gravity, under field
transformations (18). The equivalence now holds in all spacetime dimensions, and in all
metric-affine dynamics — including arbitrarily high (but finite) high-derivative ones.

We presented a detailed geometric formulation of field transformations (18), how
they encapsulate the equivalence principle, and how their violation might break the
equivalences aforementioned. Physically, this break equates to a scenario in which a
non-holonomic gauge description of gravity is completely dissociated from spacetime;
the internal degrees of freedom are not mimicking the external ones.

A known case in the literature is on degenerate spacetime regions. At them, the
vector bundle morphism e is, at most, surjective or injective. The vielbein field is
non-invertible or, in holonomic language, the metric tensor is singular. In [54–56], it was
shown that the classical equivalence between SVEP [e, A] and SEHP [g, Γ] breaks in these
regions. Our analysis, in Section 4, allows to naturally extend this result to the generic
metric-affine dynamics. Quantum mechanically, an earlier work by A. A. Tseytlin
had already noticed this failure once det

(
eA

µ

)
= 0 configurations are allowed in the

gravitational path integral [95]. In general, these spacetime regions are associated to
topology-change [71–76].

Another way to violate (18) is to postulate the existence of a non-vanishing tensor
field

DA
µν ≡ ∂µeA

ν + Γα
µνeA

α − ωA
BµeB

ν . (52)

In the literature, (52) is sometimes interpreted as the result of applying an exterior
covariant derivative, defined on the spliced bundle TX ×TM , to eA

ν . Theories with non-
vanishing DA

µν must live on the spliced bundle, and are concomitantly holonomic and
non-holonomic. Thus, the question of equivalence becomes nonsensical. This scenario,
however, presents a novel way to lift spacetime and gauge space symmetries into a
single geometrical arena, finding recent applications in 11-dimensional supergravity,
higher-spin gravity, and M-theory [96–99].
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